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Abstract We discuss a model that is capable of describing the solid-solid phase transitions in steel.
It consists of a system of ordinary differential equations for the volume fractions of the occuring
phases coupled with a nonlinear energy balance equation to take care of the latent heats of the phase
changes. This model is applied to simulate surface heat treatments, which play an important role in
the manufacturing of steel. Two different technologies are considered: laser and induction
hardening. In the latter case the model has to be extended by Maxwell's equations. Finally, we
present numerical simulations of laser and induction hardening applied to the steel 42CrMo4.

1. Introduction
In most structural components in mechanical engineering, the surface is
particularly stressed. Therefore, the aim of surface hardening is to increase the
hardness of the boundary layers of a workpiece by rapid heating and
subsequent quenching. This heat treatment leads to a change in microstructure,
which produces the desired hardening effect. Typical examples of application
are all sorts of cutting tools, (gear-) wheels, driving axles, to name only a few.

In this paper we investigate two different methods for surface hardening:
induction and laser hardening.

The mode of operation in induction hardening facilities relies on the
transformer principle. A given current density in the coil induces eddy currents
inside the workpiece 
 (cf. Figure 1). Because of the Joule effect these eddy
currents lead to an increase in temperature in the boundary layers of the
workpiece. Then the current is switched off and the workpiece is quenched by
spray-water cooling.

When the workpiece is very big or the part of the surface to be hardened has
a complicated shape, laser hardening becomes attractive. In this process a laser
beam moves along the surface of a workpiece (cf. Figure 2). The laser radiation
is absorbed by the workpiece, leading to a rapid heating of its boundary layers.
Then, the workpiece is quenched by `̀ self-cooling'' of the workpiece.

To increase the scanning width, sometimes the laser beam performs an
additional oscillating movement orthogonally to the principal moving direction.

In Section 2 we discuss a mathematical model to describe these heat
treatments. Basic ingredients are a rate law to describe the evolution of the
phase transitions, which are responsible for the change in hardness of the
workpiece. To take care of recalescence effects, this is coupled with an energy
balance equation. In addition, we have to describe models for laser radiation
and Joule heating respectively. Section 3 is devoted to developing a numerical
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algorithm for surface heat treatments. Then, in Section 4 we present numerical
simulations for both laser and induction hardening. Finally, in the last section
we make some concluding remarks concerning model improvements and
further directions of research.

2. Model equations
2.1 The phase transitions
The reason why one can change the hardness of steel by thermal treatment lies
in the occuring phase transitions, depicted in Figure 3. At room temperature, in

coil

workpiece

Figure 1.
Sketch of an induction
hardening facility

workpiece

laser beam

heating zone

Figure 2.
Sketch of a laser
hardening process
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general, steel is a mixture of ferrite, pearlite, bainite and martensite. Upon
heating, these phases are transformed to austenite. Then, during cooling
austenite is transformed back to a mixture of ferrite, pearlite, bainite and
martensite.

The actual phase distribution at the end of the heat treatment depends on the
cooling strategy. In the case of surface hardening, owing to high cooling rates
most of the austenite is transformed to martensite by a diffusionless phase
transition leading to the desired increase of hardness.

Mathematical models for phase transitions in steel have been considered,
e.g.in HoÈmberg (1995), HoÈmberg and Sokolowski (1998), Leblond and Devaux
(1984), Verdi and Visintin (1987) and Visitin (1987). For a survey on
mathematical models for laser material treatments, we refer to Mazhukin and
Samarskii (1994).

Before presenting our model we recall some classical approaches for typical
phase transitions.

The simplest way to describe diffusive phase transitions like the austenite-
pearlite transformation in the isothermal case is the Johnson-Mehl equation

p�t� � 1ÿ eÿc1���tc2���
; �2:1�

where p is the volume fraction of pearlite and c1; c2 are temperature-dependent
coefficients, to be determined from time-temperature-transformation diagrams
(cf. HoÈmberg (1996) for details).

In the nonisothermal case, a widely used approach is to apply Scheil's
additivity rule (for details and further references we again refer to HoÈmberg
(1996)): Z t

0

1

~������; p�t�� d� � 1: �2:2�

Here, ~���; p� is the time to transform the fraction p to pearlite isothermally at
temperature �. Recently, Fasano and Primicerio (1996) showed that only those
functions ~� are admissible for (2.2) that are separable, i.e. that have the form

~���; p� � �1��� � �2�p�: �2:3�
Note that c2 has to be constant, if one wants to utilize (2.1) to compute ~� .

ferrite

pearlite

bainite

martensite

ferrite

pearlite

bainite

martensite

coolingheating

austenite
Figure 3.

Possible phase
transitions in steel
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In view of (2.3), it is easily seen that the additivity rule (2.2) is equivalent to a
separable rate law

p�t0� � p0; �2:4a�

pt�t� � f1���t��f2�p�t��: �2:4b�
The austenite-martensite phase transition is diffusionless and temperature
dependent. Only during nonisothermal stages of a cooling process, can an
increase in the martensite fraction be observed.

The easiest way to describe this behaviour is by the rate law

m�t0� � 0; �2:5a�

mt�t� � �1ÿm�t��f3����H ÿ �t�; �2:5b�
where H is a smooth, monotone approximation of the Heaviside graph.
Whenever the temperature is non±decreasing,ÿ�t � 0 and hence mt � 0.

According to Leblond and Deveaux (1984), the formation of austenite cannot
be described by the additivity rule, since for fixed temperature within the
transformation range, one can get an equilibrium volume fraction of austenite
less than one. Therefore, they propose to use the rate law

a�t0� � 0; �2:6a�

at�t� � 1

����max
n�

aeq��� ÿ a�t�
�
; 0
o
; �2:6b�

with an equilibrium fraction of austenite aeq and a time-constant � .
Remark 2.1.

(1) Originally, in Leblond and Devaux (1994) the formula

at�t� � 1

����
�

aeq��� ÿ a�t�
�

was proposed. However, since we want to describe a complete heat
treatment cycle, we had to make this modification to ensure that (2.6b)
only describes the growth and not the shrinking of austenite.

(2) If one wants to avoid the nonlinearity in �t , another way to describe the
growth of martensite would be a formula similar to (2.6a-b).

To formulate a general model for phase transitions according to Figure 3, we
introduce the following notations:

z0: volume fraction of austenite,

z1; :::; z4: relative volume fractions of ferrite, pearlite, bainite, martensite,
which have been transformed from z0,
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As: critical temperature, above which the formation of austenite starts,

Ms: critical temperature, below which the formation of martensite starts
(Ms < As).

We describe the evolution of volume fractions for given temperature evolution
��:� by the following initial-value problem:

z0�0� � z00 2 �0; 1�; �2:7a�
zi�0� � 0; i � 1; :::; 4; �2:7b�

z0;t�t� � 1

����max
n�

aeq���t�� ÿ z0�t�
�
; 0
o
H���t�ÿAs� ÿ

X4

j�1

zj;t�t� �2:7c�

zi;t�t� � gi�t; z�t�; ��t��H�As ÿ ��t��; i � 1; :::; 3; �2:7d�
z4;t�t� � z0�t�H�ÿ�t�g4�t; z�t�; ��t��H�Ms ÿ ��t��; �2:7e�

where we assume

(A1) H 2 C1�IR�, monotone regularization of the Heaviside graph,
satisfyingH�0� � 0 (cf. Tiba and Neittaanmaki, 1994, p. 196).

(A2) aeq 2 C1;1�IR�, aeq�x� 2 �0; 1� for all x 2 IR.

(A3) � 2 C1;1�IR�, m � ��x� � M for all x 2 I , and constants
0 < m < M ,

(A4) gi 2 C1;1�D�; i � 1; . . . ; 4; D � �0;T� � �0; 1�5 � IR, moreover
0 � gi � M ; for all �t; z; �� 2 D and a constant M > 0.

In Section 4 we will show how this general model can be utilized for the
simulation of surface heat treatments.

2.2 Energy balance equation
Neglecting mechanical effects and using Fourier's law of heat conduction, we
consider the following heat transfer equation:

����c����t ÿr:
�

k���r�
�
� F1��; z� � F2; in QT � 
� �0;T�: �2:8�

Here, 
 � IRn; n � 2; 3 is the workpiece and �; c; k denote density, specific
heat at constant pressure and heat conductivity respectively. The terms F1;F2

will take care of the latent heats of the phase transitions and the heat source to
be decribed in the following subsections.

We consider a Newton-type boundary condition

ÿk��� @�
@�
� 
�x; t���ÿ �ÿ� in �T � @
� �0;T�;

and the initial condition
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��:; 0� � �0 in 
:

Let Li > 0; i � 0; . . . ; 4, be the amount of latent heat consumed or released
during the phase transitions. Then, F1 takes the form

F1��; z� � ÿF11��; z�A��t� � F12��; z�;
with

A��t� � ÿH�ÿ�t�; �2:9a�
F11��; z� � ����L4g4�t; z; ��H�Ms ÿ ��; �2:9b�

F12��; z� � ÿ ����L0

���� max
n�

aeq��� ÿ z0

�
; 0
o
H��ÿ As�

� ����
X3

i�1

Ligi�t; z; ��H�As ÿ ��:

Hence, in view of (2.7a-e) and (A1)±(A4), latent heat is consumed during the
growth of austenite (z0;t � 0) and released during the formation of ferrite,
pearlite, bainite and martensite.

Inserting (2.9a-c) into (2.8), we obtain the following nonlinear energy balance
equation:

����c����t � F11��; z�A��t� ÿr:
�

k���r�
�
� F12��; z� � F2; in QT ; �2:10a�

ÿk��� @�
@�
� 
�x; t���ÿ �ÿ� in �T ; �2:10b�

��:; 0� � �0 in 
: �2:10c�

2.3 Heat source I: laser radiation
Following the lines of Mazhukin and Samarskii (1994), we assume that the laser
radiation is absorbed volumetrically by the workpiece, acting as a thermal
source of equivalent power. Let the part of the workpiece surface to be
hardened lie in the plane z � 0 and suppose the laser beam strikes it in the
point �x0; y0� 2 @
.

Then, the laser radiation penetrates into the workpiece according to the
radiation transfer equation

@G

@z
� �G; �2:11a�

G
���
z�0
� �Gf : �2:11b�
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Here, G is the radiation intensity of the laser beam, Gf the radiation intensity in
the focal plane, � the absorption coefficient and � the absorptivity of the
surface, depending on the angle of incidence, the surface constitution
(smoothness, cleanliness) and on the temperature.

For constant �, we have

G � �Gf e
�z; z � 0: �2:12�

Gf is supposed to satisfy a normal distribution law

Gf � G0e
ÿ�xÿx0�2��yÿy0�2

2R2 ;

where R is the radius of the focusing spot and G0 its intensity in the spot center,
i.e.

G0 � P=�R2; �2:13�
with the radiation power P .

In applications, the laser beam moves along the workpiece surface according
to a curve tÿ!r�t� 2 IR2; t 2 �0;T�, hence we have

Gf �x; y; t� � G0e
ÿ�xÿr1�t��2��yÿr2�t��2

2R2 :

The heat source in the case of laser hardening then takes the form

F2 � �G: �2:14�

2.4 Heat source II: induction heating
For the sake of simplicity, we assume that the workpiece is translational
invariant in the direction of the z-axis with cross section 
 � IR2. In this
geometric configuration, it is reasonable to expect that the magnetic field has
the form ~H � �0; 0; h�T . Neglecting displacement currents, Maxwell's
equations then can be reduced to the following nonlinear parabolic equation (cf.
e.g. Clain et al., 1993):

��h�t ÿr:
� 1

����rh
�
� 0; in QT : �2:15a�

Here, � is the magnetic permeability and � is the electric conductivity. Outside
the conductors, h is constant, hence we consider a space-independent Dirichlet
boundary condition

h�:; t� � '�t�; in �T ; �2:15b�
and the initial condition

h�:; 0� � h0; in 
: �2:15c�
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Owing to the Joule effect, the eddy currents induced in the workpiece act as a
heat source, which can be described by

F2 � 1

����
���rh

���2: �2:16�

2.5 Summary
The two models for surface hardening under study in this paper correspond to
the following sets of equations:

(1) Laser hardening (LH). The model for laser hardening consists of the
energy balance (2.10a-c), coupled with the system (2.7a-e) to describe the
evolution of the phase fractions and the radiation transfer equation
(2.11a,b).

(2) Induction hardening (IH). Here, the energy balance (2.10a-c) and the
system (2.7a-f) have to be coupled with Maxwell's equations (2.15a-c).

Well-posedness of the model for laser hardening (LH) can be concluded from
Theorem 3.1 in HoÈmberg (1997). Existence and uniqueness for IH can be proved
using a straightforward fixed point argument using Theorem 3.1 in HoÈmberg
(1997) and Theorem 3.1 in Rodrigues (1992).

To maintain the quality of the workpiece surface, it is very important to
avoid melting effects. Especially in the case of laser hardening, which is often
applied to curved edges, it is a delicate problem to obtain parameters that avoid
melting but nevertheless lead to the desired hardening depth.

Mathematically speaking, this corresponds to minimizing the following cost
functional

J �
Z



�
z4�x;T� ÿ ~m�x�

�2

dx;

subject to the state constraint � � �m and the state equations (LH). Here, �m is
the melting temperature and ~m the desired distribution of martensite.

This control problem has been investigated in HoÈmberg and Solokowski
(1998).

3. Numerical algorithm
To allow for variable time-step sizes, we introduce the following notations:

Let M 2 be fixed, 0 � t0 < t1 < . . . < tM � T be a partition of �0;T� and

km � tm ÿ tmÿ1; 1 � m � M :

Now, we introduce a time-discrete version of the system equations for LH and
IH, respectively. We start with approximating the energy balance (2.10a-c): Let
�m : 
ÿ!IR be the solution to
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���m�c��m��
m ÿ �mÿ1

km
�F11��m; zmÿ1�A �m ÿ �mÿ1

km

� �
ÿr:

�
k��m�r�m

�
�F12��m; zmÿ1�� Fm

2 ; in 
;

�3:1a�

ÿk��m� @�
m

@�
� 
��m ÿ �ÿ�; in @
; �3:1b�

for 1 � m � M and �0 :� �0: Here, zm is an approximation of z�tm�, obtained
from a fourth order Runge-Kutta method.

In the case of laser hardening, the heat source is discretized by

Fm
2 �

�

km

Ztm
tmÿ1

Gdt:

In the case of induction hardening, the situation is more complicated. We have
to cope with a rapidly oscillating magnetic field. Hence, ' in (2.15b) takes the
form

'�t� � �h sin 2�!t; �3:2�
with frequencies ! between 104 and 106Hz.

Therefore, as in Bossavit (1985), Chain et al. (1993) or Hope and Kornhuber
(1990), we adopt the method of averaging. To this end, we introduce a new
time-step size

�m � km

!N
; N 2 IN fixed;

where 1=! is the oscillation period in (3.2). Each time interval �tmÿ1; tm� is
dissected into ! � N sub±intervals �tjÿ1

m ; tj
m� of length �m, i.e. tj

m � tmÿ1 � j�m.
Then, we consider the following time-discrete version of (2.15a-c):

�
hj

m ÿ hjÿ1
m

�m
ÿr 1

���mÿ1�rhj
m

� �
� 0; in 
; �3:3a�

hj
m � �h sin�2�!tj

m�; in @
; �3:3b�
for 1 � j � N and h0

m :� hmÿ1. The system (3.3a,b) is solved until the
difference between the averaged gradient of the solution in two consecutive
periods becomes small enough (cf. Figure 12). The new value hm is then
obtained by averaging over the last period, and the heat source is given by

Fm
2 �

1

���m� rhmj j2: �3:4�
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The space discretizations of both the nonlinear heat conduction problem and
the Maxwell equation are carried out with a Voronoi box based vertex centered
finite volume method on one-, two- and three-dimensional simplicial meshes.
Mesh generation is performed using the grid generator IBG (Schmelzer, 1993).

The solution of the discrete nonlinear heat conduction problem is obtained
using Newton-Krylov methods.

When coupled with the time-step control in the right way, Newton's method
shows quadratic convergence behaviour, which makes it possible to obtain
very exact solutions to the nonlinear problems at low additional cost.

The solution of the linear problems uses the method of conjugated gradients
for the Maxwell equation and the BICGstab method for the linear problems
occuring during the Newton process in the heat conduction equation,
respectively. These methods are preconditioned by incomplete LU
factorizations. On rectangular meshes, efficient multigrid preconditioners can
be used as well. The development of multigrid preconditioners for unstructured
meshes is still going on (cf. Fuhrmann, 1996a).

A detailed description of the nonlinear solution methods can be found in
Fuhrmann (1996b), where these methods are applied to a nonlinear porous
media flow problem with a structure very similar to the nonlinear heat
conduction problem under study in this paper.

4. Simulations for the steel 42 CrMo 4
4.1 Physical data
The numerical simulations are carried out for the steel 42 CrMo 4. Table I
depicts its chemical composition. The temperature-dependent coefficients
�; c; k have been taken from Verein Deutscher EisenhuÈttenleute (1968). Here,
and in the sequel, we use cubic splines to interpolate between values for
different temperatures in order to obtain convergence of the Newton algorithm.

We use (2.6a,b) to describe the formation of austenite during heating. The
values for the temperature-dependent coefficients aeq and � have been taken
from Leblond and Devaux(1984). For As we use the value

As � 730 oC:

According to Figure 3, during cooling four phase transitions may occur.
However, in the case of surface hardening we encounter high cooling rates.
Hence, it is sufficient to restrict ourselves to the formation of bainite and
martensite. The kinetics of these phase transitions can be drawn from the
isothermal time-temperature-transformation diagram depicted in Figure 4.

Table I.
Chemical composition
of the steel 42 CrMo 4

C Si Mn P S Cr Cu Mo Ni

0.38 0.23 0.64 0.0019 0.013 0.99 0.17 0.16 0.08

Source: From Vereins Deutscher EisenhuÈttenleute (1961)



Simulation of
surface

hardening

715

For the formation of bainite we make the ansatz

bt � f �b� g���; �4:1�
where b is the volume fraction of bainite (cf. Section 2.1).

For fixed temperature �, the curved lines in Figure 4 denote the beginning
(ts) and the end (tf ) of transformation, defined by volume fractions b � 0:01 and
b � 0:99 respectively. Integrating (4.1) keeping � fixed, we obtain

g��� � 1

tf ÿ ts

Z0:99

0:01

1

f �b� db: �4:2�

A frequently used ansatz for f is

f �b� � bq �1ÿ b�1ÿq; and q 2 �0; 1�: �4:3�
Another approach, using the Johnson-Mehl equation, can be found in HoÈmberg
(1996). Choosing q � 0 in (4.3), we obtain

g��� � 1

tf ÿ ts
ln�99� : �4:4�

The values for tf and ts can be drawn from Figure 4. Figure 5 shows the graph
of g���.

For the formation of martensite we use the ansatz

mt � �1ÿm� cmH�ÿ�t�H�Ms ÿ ��: �4:5�

Source: Vereins Deutscher Eisenhütterleute (1961)

Figure 4.
Isothermal time-

temperature-
transformation diagram

for the steel 42CrMo4
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The constants cm and Ms can be identified from the volume fractions of
martensite depicted in Figure 4. We chose

cm � 1:4; Ms � 360oC: �4:6�

Replacing 1ÿ b and 1ÿm with the actual volume fraction of austenite, we end
up with the following initial-value problem:

a�0� � b�0� � m�0� � 0; �4:7a�

at�t�� 1

����t��max
n

aeq���t�� ÿ a�t� ; 0
o
H��ÿ As� ÿ bt�t� ÿmt�t�; �4:7b�

bt�t� � a�t� g���t��; �4:7c�

mt�t� � a�t� cmH�ÿ�t�t��H�Ms ÿ ��t��: �4:7d�

In our simulations we assume further that the latent heat L is the same for all
the phase transitions, namely

L � 82
J

g

� �
: �4:8�

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0
200 250 300 350 400 450 500 550 600

theta

Figure 5.
Graph of the function
g��� in (4.4)
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Then, the functions F11 and F12 in (2.9b,c) take the form

F11��; a; b;m� � ����L cm aH�Ms ÿ ��; �4:9�

F12��; a; b;m��ÿ ����L
���� max

n
aeq���ÿ a; 0

o
H��ÿ As������Lag���: �4:10�

4.2 Numerical results for laser hardening
A disadvantage of laser hardening is that no additional spray water cooling
can be applied to support the quenching process. This is reflected in numerical
simulations: to obtain the desired hardening effect by the formation of
martensite, one has to make full 3-d calculations, otherwise not enough heat can
be carried off.

We simulate the hardening along a strip around the y-axis on the upper face
(z � 0) of the cube �
 � �ÿ2:5; 2:5� � �0; 10:0� � �ÿ1:0; 0�. The values for the
physical parameters used in these calculations can be found in Table II. They
correspond to a 2.8kW Nd:YAG-laser. Since the main quenching effect is the
self-cooling of the workpiece, we assume 
 � 0 in (3.1b), i.e. a homogeneous
Neumann boundary condition for �.

The scanning width s is twice the amplitude of the oscillations orthogonally
to the moving direction related to the spotcenter, and f their frequency. The
remaining parameters are explained in Section 2.3. The absorption coefficient �
and the absorptivity � have been gauged by comparison with measured
hardening profiles.

Figure 6 shows the time evolution at the point x � �0:0; 1:0;ÿ0:01� 2 
.
Owing to the oscillations of the laser beam, the point is heated by steps.
Austenite is formed, and during cooling this austenite is transformed to
martensite and a fairly small amount of bainite. In the course of martensite
growth, the cooling process is slowed down by the release of latent heat.

Figure 7 depicts the temperature distribution on the upper surface of 
 at
time t � 3s. The variety of possible hardening profiles and the interplay
between the control parameters R and v is illustrated in Figures 8 and 9. The
typical hardening depth is between 0.1 and 1mm. To improve the visualization,
we enhanced the effect by increasing � and �. To avoid surface melting this

Table II.
Physical data for laser

hardening

Description Denotation Value (range) Unit

Radius of focusing spot R 0.25, . . ., 0.9 cm
Radiation power P 2,800 W
Absorption coefficient � 60.0 1/cm
Absorptivity � 0.3
Laser beam velocity v 50, . . ., 150 cm/min
Scanning width s 0.0, . . ., 1.3 cm
Frequency of oscillation f 175 Hz
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had to be compensated by an increase in laser beam velocity. That is why the
velocities are greater than in Table II. The profiles in Figure 8 are obtained
without oscillations of the laser beam. The widening of the hardness profile has
been achieved by increasing the radius R of the focusing spot. Since increasing
R leads to a decrease of the radiation intensity G0 (cf. (2.13)), the velocity has to
be reduced in order to get the same depth of the hardening profile.

In Figure 9, the spot radius is the same as in Figure 8(a). Here, the widening
of the profile has been achieved by letting the laser beam oscillate orthogonally
to the moving direction. While the amplitude is the same in (a) and (b), the kind
of oscillation is different. The sawtooth form in Figure 9(a) leads to a uniform
heating along the hardening strip, while the sinusoidal oscillations in Figure

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0.001 0.01 0.1

Time (s)
1 10 100

Temperature(1000 C)
Austenite

Bainite
Martensite

Figure 6.
Time evolution of
temperature, austenite,
bainite and martensite
fraction for x=(0.0, 1.0,
±0.01) 2 


Figure 7.
Temperature
distribution on the
upper workpeice surface
at time t = 3.0s
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9(b) preferentially heat the boundary of the strip. This leads to a further
widening of the hardening profile, but to obtain the same profile depth as
before, the velocity has to be reduced.

To demonstrate that our model is able to predict the hardening profile also
quantitatively, we compare our results with measurements carried through by
INPRO GmbH, Berlin. Figure 10 shows the relationship between measured
hardening depth and laser velocity. The curve endings for low velocities
indicate the beginning of surface melting. Below, the corresponding simulated
diagram is depicted, using the parameters of Table II.

We define the depth of the hardening profile to be the maximal distance from
the surface, where the volume fraction of martensite is greater than or equal to 90
per cent. Although the exact shape of the curves is different from the measured
ones, they show the same increase with decresing velocity. For small velocities the
relationship between hardening depth and velocity tends to become independent
of the focus radius. The maximal absolute error is approximately 0.1mm.

A more detailed comparison would require more refined metallurgical
measurements and is beyond the scope of this paper.

4.3 Numerical results for induction hardening
For the magnetic permeability we use the value

� � 4� � 10ÿ9 V s

A cm
:

a

b

c

Figure 8.
Hardening profile at y =
1.0, no oscillations; (a) R
= 0.25cm, v = 150cm/s;

(b) R = 0.5cm, v = 50cm/
s; (c) R = 0.9cm, v =

50cm/s;

(a)

(b)

Figure 9.
Hardening profile at y =

1.0; (a) sawtooth
oscillations, R = 0.25cm,
s = 1.3cm, v = 100cm/s;

(b) sinusoidal
oscillations, R = 0.25cm,

s = 1.3cm, v = 80cm/s;
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The electric conductivity is assumed to be temperature-dependent, i.e.

���� � 1

c1 � c2�� c3�2 � c4�3

1


 cm
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Figure 10.
Measured hardening
depth against velocity of
the laser beam (INPRO
GmbH, Berlin), above,
and the corresponding
numerical simulations,
below
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with c1 � 4:9656 � 10ÿ5, c2 � 8:4121 � 10ÿ8, c3 � ÿ3:7246 � 10ÿ11, c4 �
6:1960 � 10ÿ15 (cf. Chain et al., 1993).

We call t1 the time, until when the workpiece is heated by the eddy currents,
and assume that the water cooling starts at t1. Hence, the Dirichlet condition in
(2.15b) takes the form

'�t� �
�h sin�2�!t�; 0 � t < t1;

0; t � t1;

(
�4:11�

with �h � 1:5 � 103A/cm. The heat exchange coefficient 
 in (2.10b) has been
chosen according to HoÈmberg (1996) as


�t� � 0; 0 � t < t1;

2:8; t � t1;

(

expressed in J/cm2sK. We simulate the surface hardening of a `̀ very thick''
gear±wheel. For symmetry reasons, the domain can be reduced to the sector 

depicted in Figure 11.

As explained in Section 3, we have to work with two time-scales. In each
time-step km we solve (3.3a,b), until the difference between the averaged
gradient of the solution in two consecutive periods becomes small enough (see
Figure 12).

In two space dimensions, the magnetic field is constant outside 
. Therefore,
geometric effects like a varying distance between the workpiece 
 and the coil
(cf. Figure 1) cannot be taken into account. Thus, the important control
parameters in our simulations are the frequency ! and the heating time t1.

Figure 13 depicts the result of a simulation at time t � 0:42s. The left gear-
wheel shows the temperature distribution while the right one represents the
distribution of phases.

Figure 14 shows the influence of the skin effect on the hardening depth. With
growing frequency, the hardening depth decreases.

These are only qualitative results. To obtain quantitative predictions,
the amplitude �h in (4.11), which we have estimated numerically in order to
get visible hardening depths, has to be gauged by comparison with
experiments.

5. Conclusions
We have investigated a mathematical model for laser and induction
surface hardening, including the occuring phase transitions that produce

Figure 11.
Computational domain
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the hardening effect. In the simulations presented here, the formation of
bainite is negligible (always less than 5 per cent). However, if workpieces
with more complicated geometries are considered, where the heat
cannot be carried off fast enough, the growth of bainite becomes
important.

gradient of period difference (L2 norm)
relative change of energy estimate

10

1

0.1

0.01

0.001

0.0001

1e-05
0 10 20 30 40 50 60

Periods
80 9070 100

E
rr

or

Figure 12.
Difference between the
averaged gradient of the
solution in two
consecutive periods in
different norms and
relative change of
energy estimate, � fixed

Figure 13.
Result of the numerical
simulation at time t =
0.42s, t1 = 0.48s, !
=105Hz
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Concerning laser hardening, a comparison between Figures 8 and 9 shows that
instead of simply increasing the spot radius, the widening of a hardness profile
can be achieved more efficiently if the beam oscillates orthogonally to the
moving direction.

A comparison with measurments shows that the depth of the hardening
profile can be predicted with a maximal error of approximately 0.1mm.

For more complex geometries, the estimation of parameters for laser
hardening is a difficult task. Hence, an important direction for further research
is the development of numerical optimization strategies.

In the case of induction hardening, the numerical results show all the
features that are observed in practice. However, for a quantitative comparison
with measurements, one should be able to account for varying distance
between coil and workpiece. This problem cannot be treated in the 2D
approximation of Maxwell's equations considered here, since in this case the
magnetic field is space-independent outside the workpiece.

Therefore, the development of efficient solvers for Maxwell's equations in
three space-dimensions is another important direction of further research.

(a)

(b)

(c)

Figure 14.
Influence of the skin

effect on the hardening
depth: (a) ! � 104Hz, t1

= 3.3s; (b) !ÿ 105Hz, t1

= 0.48s; (c) ! � 106Hz,
t1 =0.06s
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